APPLICATION OF TIERS 1,2, & 3 FOR ASRC BOILER PROPOSED REGULATION 5.22, SECTIONS 2, 3 & 4

KENTUCKIANA ENGINEERING CO., INC.
311 TOWNEPARK CIRCLE, SUITE 100
LOUISVILLE, KY 40243
502-489-8074
502-489-8078 FAX

ASRC SINGLE COAL BOILER Cr(VI) TIER 1, 2 AND 3 MODELING*

- > TIER 1 PROCEDURE & INPUTS
- > TIER 1 RESULTS
- > TIER 2 PROCEDURE & INPUTS
- > TIER 2 RESULTS
- > TIER 3 PROCEDURE & INPUTS
- > TIER 3 RESULTS
- * Chronic Risk for Cr(VI) not Evaluated in Tiers 1, 2 or 3

TIER 1 PROCEDURE & INPUTS

- > Determine TAC Averaging Time(s) per Regulation 5.20
- Determine BAC Simple Factor(s) per Table 1, Regulation 5.22, Section 2.2
- Determine BAC_c for Each TAC per Regulation 5.20, Sections 3, 4 & 5
- Calculate Allowed Emission_{ij} for Each TAC for Each Emission Point per Equations 1 through 4 per Regulation 5.22, Section 2 for the BAC_c

ASRC BOILER Cr(VI) TIER 1 RESULTS

- Averaging Time Per Regulation 5.20 = Annual
- > Simple Factor(s) per Table 1 Regulation 5.22
 - \triangleright Annual Factor $(F_A) = 480$
 - \triangleright 1-Hr Factor (F₁) = 0.54
- > BAC_c for Cr(VI) Per Regulation 5.20=1x10⁻⁶ /URE,
 - > URE for $Cr(VI) = 1.20 \times 10^{-2}$ (per IRIS)
 - \triangleright BAC_c = 1x10⁻⁶ / 1.20 x 10⁻² = 0.000083 ug/m³
- Max Concentration_{ij} for $Cr(VI) = BAC_c \times 1.0$ for an Existing Emission Point per Regulation 5.21, Section 2.5.1, which is the EAL_c^*

^{*} The EAL is 1.0 for Chromium Compounds from a single emission point. Per Regulation 5.20 the R_c (Risk) is calculated by dividing Max Concentration for the TAC by the BAC_c. The Max Concentration, therefore, is equal to the BAC_c in order for the Risk to be equal to 1.0, which is the EAL.

ASRC BOILER Cr(VI) TIER 1 RESULTS

- Max Concentration_{ij} = Allowed Annual Emission_{ij} / F_A or Allowed Annual Emission_{ij} / F₁ whichever provides the highest Max Concentration_{ii}
 - Max Concentration_{ij} (Annual) = Allowed Annual Emission_{ij} / 480, or 0.000083ug/m³ x 480 (lb/yr)/(ug/m³) = 0.0408 lb/yr
 - Max Concentration_{ij} (1-Hr) = Allowed Annual Emission_{ij} / 0.54, or $0.000083ug/m^3 \times 0.54$ (lb/hr)/(ug/m³) = 0.0000448 lb/hr, for an Operating Year of 8,760 hrs = 0.392 lb/yr
- Since the F_A Produces the Lowest Annual Allowable Emission Rate, the Allowed Annual Emission from Tier 1 Modeling is 0.0408 lb/yr. PTE of Cr(VI) is 6.263 lb/yr.
- > Conclusion Tier 2 Analysis is Required.

TIER 2 PROCEDURE & INPUTS

- > Determine TAC Averaging Time per Regulation 5.20
- Acquire Scaled 3-D Drawings & Coordinates of Entire Facility
- > Determine Each Emission Point's Parameters for:
 - > Stack Discharge Height (H_s) in ft
 - Height of Influential Building (H_b)
 - Distance from Stack Base to Nearest Secured Fence Line (ft)
- \triangleright Calculate the H_s / H_b Ratio, if > 2.5, use 2.5
- Use Table 2 of Regulation 5.22 to Look Up the Annual Factor
- Calculate the Max Concentration_{ij} Using Equation 5
- Calculate the Allowed Annual Emission_{ii}

ASRC BOILER Cr(VI) TIER 2 RESULTS

- > ASRC Boiler Emission Point's Parameters:
 - > Stack Discharge Height (H_s) in ft = 180, must round down to max of 125 ft for Building Height of 50 ft
 - \triangleright Height of Influential Building (H_b) in ft = 50
 - ➤ Distance from Stack Base to Nearest Secured Fence Line (ft) = 138.4, must round down to 100 ft
- \rightarrow H_s / H_b Ratio = 180/50 = 3.6, must use 2.5
- > Table 2 Inputs Are, Therefore:
 - > Building Height of 50 ft
 - \rightarrow H_s / H_b Ratio of 2.5
 - > Distance to Fence Line = 100 ft
 - > Stack Height = 125 ft

ASRC BOILER Cr(VI) TIER 2 RESULTS

- > Table 2 Annual Factor = $4.630 \text{ (lb/hr)/(ug/m}^3\text{)}$
- Max Concentration_{ij} = Allowed 1-Hr Emission_{ij} / Annual Factor
 - ➤ Max Concentration_{ij} = Allowed 1-Hr Emission_{ij} / 4.63, therefore
 - > Allowed 1-Hr Emission_{ij} = $0.000083ug/m^3 x$ $4.630(lb/hr)/(ug/m^3) = 0.000384 lb/hr$
- Allowed Annual Emission =0.00038 lb/hr x 8760 hr/yr =3.366 lb/yr. PTE is 6.263 lb/yr.
- Conclusion Tier 3 Analysis Required.

TIER 3 PROCEDURE & INPUTS

- > Determine TAC Averaging Time per Regulation 5.20
- Acquire Scaled 3-D Drawings & Coordinates of Entire Facility
- > Determine Each Emission Point's Parameters for:
 - > Stack Discharge Height & Diameter in meters
 - Stack Discharge Temperature in degrees Kelvin
 - Stack Discharge Exit Velocity in meters/second
 - > Height of Influential Building in meters
 - > Distance from Stack Base to Nearest Secured Fence Line, meters
 - Width & Length of Influential Building in meters
 - > TAC Emission Rate in grams/second
- > Acquire and Install SCREEN3 and/or TSCREEN Models

TIER 3 PROCEDURE & INPUTS

- ➤ Input Emission Point Parameters and Site Parameters into Model, Following Order Requested by the Model
- Enter Distance Radii Desired for Calculation of Concentrations at Various Distances
- > Review and Determine if Additional Runs Are Needed
- ➤ Determine Adjustment Factor Per Regulation 5.22, Section 4.2
- Adjust Max Concentration Produced by Model by Factor in Section 4.2
- Calculate Compliance with EAL per Equations 1 through 5, Regulation 5.21, Sections 2.2 through 2.6

ASRC BOILER Cr(VI) TIER 3 RESULTS

- > TAC Averaging Time per Regulation 5.20 = Annual
- > Stack Discharge Height in meters = 53.34
- > Stack Diameter in meters = 2.21
- > Stack Discharge Temp in Kelvin = 341.48
- Stack Exit Velocity in meters/second = 18.04
- > TAC Emission Rate grams/second = 0.00009
- > Height of Influential Building in meters = 15.24
- ➤ Width & Length of Influential Building = 12.04 x 21.07 m
- Distance from Stack Base to Nearest Secured Fence Line in meters = 42.2
- Receptor Distance Spacing = used 100 out to 5 km

ASRC BOILER Cr(VI) TIER 3 RESULTS

- Results of SCREEN3 Model:
 - Max Concentration was 0.000453 ug/m³ 1-hr average
 - > Distance at Max Concentration was 1841 meters from the stack
- Adjustment Factor per Regulation 5.22, Section 4.2 = 0.02 (going from 1-hr concentration to an annual concentration)
- ightharpoonup Max Annual Concentration_{ij} = 0.000453 ug/m³ x 0.02 = 0.000009 ug/m³
- > Risk R_c = Max Annual Concentration_{ij} / BAC_c per Equation 1 of Regulation 5.20, Section 2.5 = 0.000009 ug/m³ /0.000083 ug/m³ = 0.108

ASRC BOILER Cr(VI) TIER 3 RESULTS

- > Allowable Risk, $EAL_c = 1.0$ and Tier 3 Results Show $R_c = 0.108$
- Allowable Emissions = 6.263/.108 = 57.991 lb/yr. PTE is 6.263 lb/yr.
- ➤ Conclusion Cr(VI) Emissions from the Single Coal Boiler Comply Using the Tier 3 SCREEN3 Model.

AIR DISPERSION MODELING OF ASRC BOILERS USING ISC3 MODEL PROPOSED REGULATION 5.22, SECTION 5, TIER 4

KENTUCKIANA ENGINEEQING CO., INC.
311 TOWNEPARK CIRCLE, SUITE 100
LOUISVILLE, KY 40243
502-489-8074
502-489-8078 FAX

ASRC BOILERS

- ▶ 2 SPREADER STOKER COAL FIRED BOILERS
 - ATOMIZED LIME SLURRY SO₂ SCRUBBERS
 - 12 MODULE REVERSE BAGHOUSE FOR PARTICULATE EMISSIONS
- ▶ 2 PACKAGE NATURAL GAS BOILERS
- ► BOTH UNITS MODELED AT ALLOWABLE EMISSION RATES (POTENTIAL TO EMIT) NOT THE ACTUAL OPERATING RATE

ASRC BOILERS

- ► PERMITTED IN 1990 UNDER PREVENTION OF SIGNIFICANT DETERIORATION REVIEW
- MEET BEST AVAILABLE CONTROL TECHNOLOGY
- ► BASED ON NEW FEDERAL BOILER MACT RULE, BOILER CONTROL EQUIPMENT MEETS MAXIMUM AVAILABLE CONTROL TECHNOLOGY

INTRODUCTION

- ► PRACTICAL MODELING EXAMPLE
 - COAL FIRED/NATURAL GAS FIRED BOILERS
- ► AT THE REQUEST OF BOARD
 - Familiarize Board and Staff with modeling requirements
 - Provide a forum for discussion concerning modeling

MODEL SELECTION

- ► SCREEN3 AND TSCREEN Tier 3
 - Models only one stack or one fugitive source at a time
- ►ISC3 Tier 4
 - Models multiple sources
 - Models multiple averaging periods
 - Accepts NWS hourly met data

ISC3 MODEL SELECTED

- ► Tier 4 Option
- ► Model multiple sources
- Uses NWS Meteorological data
- Used Regulatory Default Option as required by EPA
- Graphical User Interface by Lakes Environmental
 - DOS version available at the EPA website does not give graphical representation of data for error checking

PLANT DATA

- > SITE PLAN MAP
 - Map, Plant Boundary, Buildings, Stacks, UTM Coordinates (X,Y,Z)
- **BUILDING DIMENSIONS AND LOCATIONS**
 - Height, Width, # of Tiers, UTM Coordinates (X,Y,Z)
- > STACK DATA
 - Height, Diameter, Temperature, Exit Velocity, Emissions, UTM Coordinates (X,Y,Z)
- ► FUGITIVE DATA
 - Type, Length, Width, Temperature, Release Height, UTM Coordinates (X,Y,Z), Emissions

DATA PREPARATION PROCESS

- Multiple Source Plant can take up to 3-4 weeks and 40-60 engineering man hours to prepare data for model input for all emissions
 - Prepare site drawings
 - ► Full size drawing to scale showing buildings, stacks, plant property line, etc.
 - Collect emissions data
 - ▶ Emissions data on a point by point basis (hourly and annual)
 - Collect stack data
 - ▶ Height, diameter, exit velocity, temperature, location, base elevation
 - Collect building data
 - ▶ Building dimensions, base elevations, location

METEOROLOGICAL DATA

- ► ACQUIRE 5 YEARS OF MOST RECENT AVAILABLE REPRESENTATIVE DATA
- PERFORM DATA QUALITY ANALYSIS ON DATA
- GENERATE METEOROLOGICAL DATA FILES
 FOR USE IN MODEL

METEOROLOGICAL DATA USED

- ► <u>WWW.WEBMET.COM</u>
 - FREE
 - Upper Air Data Dayton, Ohio 1984-1991
 - Surface Data Louisville, KY 1984-1992
 - Must Perform Data Quality Analysis to Use Data in Model

DATA QUALITY ANALYSIS

- CHECK FOR MISSING OR BAD DATA
- ► REPLACE MISSING OR BAD DATA
 - "Procedures for Substituting Values for Missing NWS Meteorological Data for Use in Regulatory Air Quality Models" (EPA)

GENERATE METEOROLOGICAL DATA

- COMBINE UPPER AIR AND SURFACE STATION DATA FOR EACH OF 5 YEARS CHOSEN
 - GET ANEMOMETER HEIGHT FOR SURFACE STATION
 - ELEVATION OF SURFACE STATION
 - LAT/LONG OF SURFACE STATION
 - TIME ZONE OF SURFACE STATION

DIGITAL ELEVATION MAPS

- DIGITAL ELEVATION MAPS (DEM)
 - COVERING AREA OF MODELING DOMAIN
 - 7.5 MINUTE TERRAIN MAPS 12 Files
 - www.webgis.com

TOPO MAPS

- TOPOGRAPHY MAPS OF MODELING DOMAIN CONVERTED TO:
 - DXF FORMAT IN UTM COORDINATES, ZONE 16, NAD 27
 - BITMAP FORMAT
 - LOCATE OPPOSING POINTS OF REFERENCE
 - ▶UTM COORDINATES, ZONE 16, NAD 27

BUILDING DOWNWASH BPIP MODEL

- ► IMPORT PLANT SITE MAP
- DRAW BUILDINGS AND SPECIFY DIMENSIONS
 - UTM ZONE 16, NAD27
 - BASE ELEVATION
- ► DRAW STACKS AND SPECIFY DIMENSIONS
 - UTM ZONE 16, NAD27
 - BASE ELEVATION

RECEPTOR GRID DATA

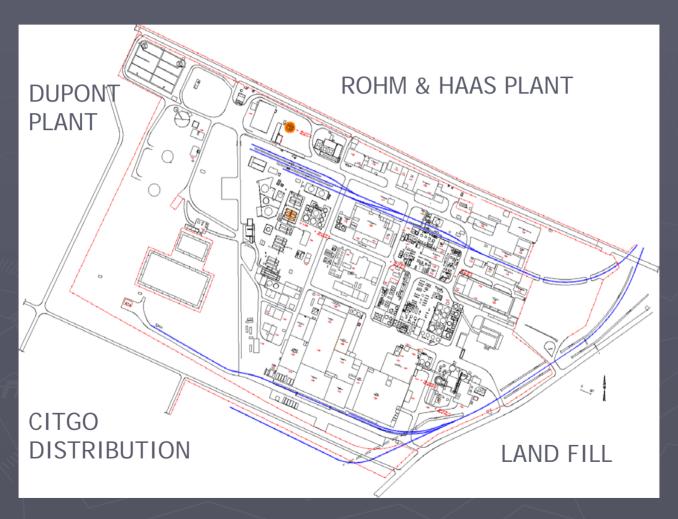
- COARSE GRID 1 KM SPACING OUT TO AT LEAST 5 KM IN EACH DIRECTION (10 KM BY 10 KM GRID)
- ► REFINED GRID 100 METER SPACING GOING OUT AT LEAST 3.5 KM FROM FENCELINE
 - Determines point of maximum ambient concentration as required by the regulation.
- ► CAN ALSO ESTABLISH DISCRETE RECEPTORS
 - Determines ambient concentrations at a specific location

SET UP ISC3 MODEL

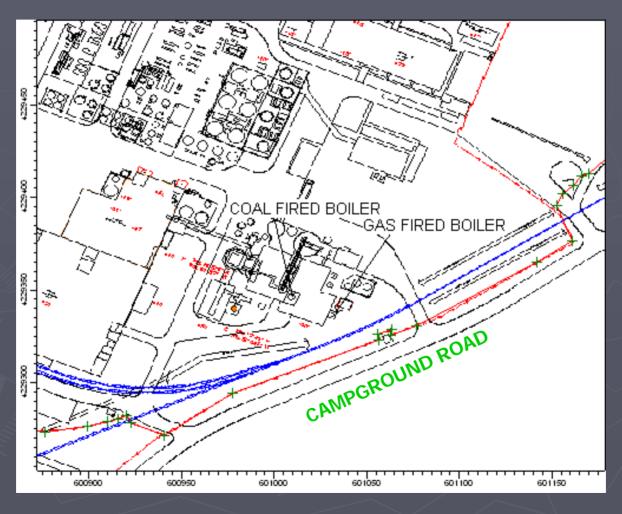
- STACK DATA
- ► FUGITIVE DATA
- BPIP DATA
- RECEPTOR GRID DATA
- PLANT BOUNDARY
- MODEL OPTIONS
 - Annual Averaging Time
 - Regulatory Default Option
- OUTPUT OPTIONS
 - High First High Values Maximum Impact
 - Contributions of each modeled source
- MET DATA FILES
 - Upper Air Dayton, Ohio 1986-1990
 - Surface Data Louisville, KY 1986-1990

RUN ISC3 MODEL

- ► VERIFY RUNS AND CORRECT ANY ERRORS
- RUN MODEL
 - Separate runs for each TAC
 - Stack Sources 2-3 hour run time for 5 years
 - Fugitive Sources 1-3 days run time for 5 years
- REVIEW OUTPUT
- ► GENERATE MODEL RESULTS TABLES


ASRC BOILER MODEL PRELIMINARY INFORMATION

- ▶ DETERMINE TACS THAT WILL BE EMITTED
 - EMISSION FACTOR SOURCE AP-42
 - ► Coal lbs of TAC per ton of coal burned
 - 2.6X10⁻⁴ lbs/ton total chromium
 - Natural Gas Ibs of TAC per mmcf of natural gas burned
 - 1.4X10⁻³ lbs/mmcf total chromium
- ► PERFORM MODEL FOR ALL BOILER RELATED TACS
 - Additional runs required for multiple stacks


EMITTED CATEGORY 1 TACs

CAS No.	Compound	COAL BOILERS	GAS BOILERS
7440-38-2	Arsenic & various arsenic compounds	Х	X
75-25-2	Bromoform	X /	
7440-43-9	Cadmium & various cadmium compounds	X	X
67-66-3	Chloroform	/ X	X
7440-47-3	Chromium & various chromium compounds	X	X
106-46-7	1,4-Dichlorobenzene	X /	X
50-00-0	Formaldehyde	/ x	X
75-09-2	Methylene chloride [Dichloromethane]	X	X
7440-02-0	Nickel & various nickel compounds	X	X

ASRC SITE MAP

ASRC BOILER LOCATIONS

FUEL RATE FOR BOILERS

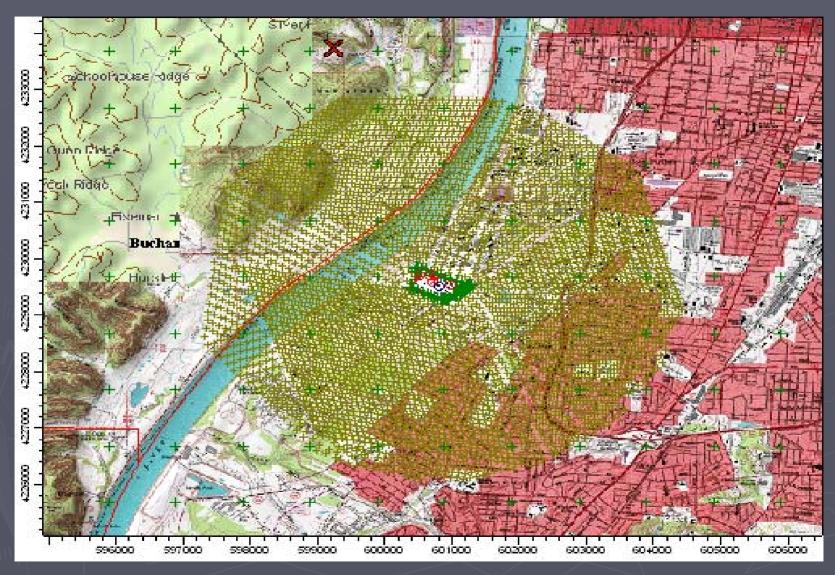
- COAL FIRED BOILERS 2
 - 18.12 Tons per hour coal burned
 - 212 mmBTU/hr Each
- NATURAL GAS FIRED BOILERS 2
 - 0.099 mmcf Natural Gas Burned
 - 99 mmBTU/hr Each

EMISSION PARAMETERS

- **SOURCES**
 - COAL-FIRED BOILER
 - NATURAL GAS BOILER
- **EMISSION DATA SOURCE**
 - COAL FIRED BOILER
 - ►AP-42, TABLE 1.1-18 (Total Chromium & Chromium VI)
 - NATURAL GAS FIRED BOILER
 - ►AP-42, TABLE 1.4-4 (Total Chromium)

CHROMIUM SPECIATION FROM COAL COMBUSTION

- ► TOTAL CHROMIUM
 - AP-42, Table 1.1-18 2.6X10⁻⁴ lbs/ton
- ► HEXAVALENT CHROMIUM
 - AP-42, Table 1.1-18 7.9X10⁻⁵ lbs/ton
- TRIVALENT CHROMIUM
 - NO SPECIFIC AP-42 FACTOR
 - ▶ 30.4% (AP-42) Hexavalent
 - >Assume 69.6% Trivalent


COAL FIRED BOILER EMISSIONS

- ▶ 18.12 TONS/HR COAL BURNED
- **EMISSION FACTOR**
 - Γ Cr(total) = 2.6X10⁻⁴ lbs/ton
 - Cr(VI) = 7.9X10⁻⁵ lbs/ton
 - $Cr(III) = 1.81X10^{-4} lbs/ton$

EMISSION CALCULATIONS

- Cr(total)
 - ▶ 18.12 tons/hr X 0.00026 = 4.71X10⁻³ lbs/hr
 - \blacktriangleright 4.71X10⁻³ lbs/hr X 453.6 g/lb X 1 hr/3,600 sec = 5.94X10⁻⁴ g/s
- Cr(VI)
 - ► 18.12 tons/hr X 0.000079 = 1.43X10⁻³ lbs/hr
 - \rightarrow 1.43X10⁻³ lbs/hr X 453.6 g/lb X 1 hr/3,600 sec = 1.80X10⁻⁴ g/s
- Cr(III)
 - ▶ 18.12 tons/hr X 0.000181 lbs/ton = 3.28X10⁻³ lbs/hr
 - \rightarrow 3.28X10⁻³ lbs/hr X 453.6 g/lb X 1 hr/3,600 sec = 4.13X10⁻⁴ g/s

REFINED 100 METER RESOLUTION GRID

TAC MODELED

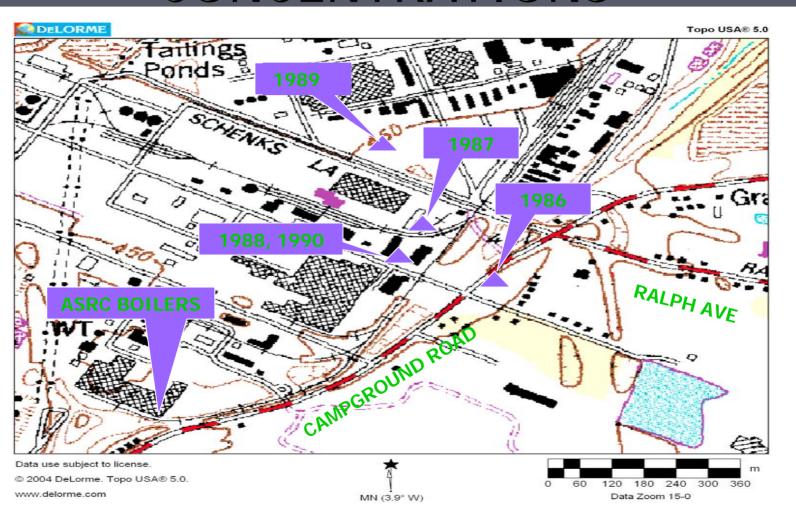
CAS No.	Compound	COAL BOILERS	GAS BOILERS
7440-38-2	Arsenic & various arsenic compounds	X	X
71-43-2	Benzene	X	X
75-25-2	Bromoform	X	
7440-43-9	Cadmium & various cadmium compounds	X	X
67-66-3	Chloroform	X	X
7440-47-3	Chromium & Various Chromium Compounds	X	X
106-46-7	1,4-Dichlorobenzene	X	X
50-00-0	Formaldehyde	X	X
75-09-2	Methylene chloride [Dichloromethane]	X	X
7440-02-0	Nickel & various nickel compounds	X	X

PRELIMINARY MODEL RESULTS

- ► FIVE YEAR SUMMARY TABLE
 - MAXIMUM ANNUAL IMPACTS AND LOCATIONS
 - VERIFY ACCURACY OF INPUT AND OUTPUT DATA
- ► COMPARED TO BACs CALCULATED BY LMAPCD
 - 18540-29-9 8.3X10-5 ug/m³ BAC_c Hexavalent
 - 18540-29-9 8.3X10-3 ug/m³ BAC_{nc} Hexavalent
 - 16065-83-1 5.0 ug/m³ BAC_{nc} Trivalent

5 YEAR PRELIMINARY SUMMARY TABLE

		COAL AND GAS FIRED BOILERS					
		TOTAL					
		CR.	CR VI	CR III	CR VI	CR VI	CR III
		MAX	MAX	MAX	BAC _c	BAC _{nc}	BAC _{nc}
	UTM COORD	CONC.	CONC.	CONC.			
YEAR	(meters)	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m³	ug/m³
1986		1.30E-04	3.95E-05	9.05E-05	8.30E-05	8.30E-03	5.00E+00
X	601,490.40						
Y	4,229,680.00						
1987		1.40E-04	4.26E-05	9.74E-05	8.30E-05	8.30E-03	5.00E+00
X	601,281.88						
IIIII VIIII Y	4,230,078.00						
1988		1.40E-04	4.26E-05	9.74E-05	8.30E-05	8.30E-03	5.00E+00
X	601,316.13						
Υ	4,229,743.50						
1989		1.00E-04	3.04E-05	6.96E-05	8.30E-05	8.30E-03	5.00E+00
X	601,350.81						
Y	4,229,837.50						
1990		1.40E-04	4.26E-05	9.74E-05	8.30E-05	8.30E-03	5.00E+00
S MINX	601,316.13						
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4,229,743.50						


COAL FIRED BOILER IMPACTS

		TOTAL		
		CR.	CR VI	CR III
		MAX	MAX	MAX
	UTM COORD	CONC.	CONC.	CONC.
YEAR	(meters)	ug/m³	ug/m ³	ug/m ³
1986		1.20E-04	3.65E-05	8.35E-05
X	601,490.40			
Y	4,229,680.00			
1987		1.30E-04	3.95E-05	9.05E-05
X	601,281.88			
Y	4,230,078.00			
1988	\ \	1.30E-04	3.95E-05	9.05E-05
X	601,316.13			
Y	4,229,743.50			
1989	/ /	1.00E-04	3.04E-05	6.96E-05
X	601,350.81			
Y	4,229,837.50			
1990		1.30E-04	3.95E-05	9.05E-05
X	601,316.13			
Ý	4,229,743.50			

GAS FIRED BOILERS

		TOTAL		
		TOTAL		
		CR.	CR VI	CR III
		MAX	MAX	MAX
	UTM COORD	CONC.	CONC.	CONC.
YEAR	(meters)	ug/m ³	ug/m ³	ug/m ³
1986		1.00E-05	1.00E-05	1.00E-05
X	601,490.40			
Y	4,229,680.00			
1987		1.00E-05	1.00E-05	1.00E-05
X	601,281.88			
Y	4,230,078.00			
1988		1.00E-05	1.00E-05	1.00E-05
X	601,316.13			
Y	4,229,743.50			
1989		1.00E-05	1.00E-05	1.00E-05
X	601,350.81			
Y	4,229,837.50			
1990		1.00E-05	1.00E-05	1.00E-05
X	601,316.13			
Y	4,229,743.50			

LOCATION OF MAXIMUM CONCENTRATIONS

OBSERVATIONS AND CONCLUSIONS

USE OF ISC3 MODEL

- CANNOT SIMPLY DOWNLOAD ISC3 MODEL FROM INTERNET AND RUN
- ► NEED GRAPHICAL USER INTERFACE, WITH APPROXIMATE COST OF \$6,000
- ► REQUIRES A TRAINED AND QUALIFIED MODELER TO OBTAIN AND VERIFY ACCURATE RESULTS
- ► AVAILABLE FREE MET DATA MUST BE ANALYZED TO MAKE USABLE IN THE MODEL OR MUST PURCHASE AT COST OF APPROXIMATELY \$4,000

USE OF ISC3 MODEL (cont.)

- ► DATA REQUIRED IS COMPLEX
- FACILITIES WILL NOT ALWAYS HAVE THE REQUIRED DATA READILY AVAILABLE IN A FORM TO BE USED IN THE MODEL
- TIME AND EFFORT TO SET UP AND RUN
 THE MODEL

VARIABILITY OF THE MODELING RESULTS

- MAXIMUM CONCENTRATION OF A TAC MAY OCCUR AT DIFFERENT LOCATIONS AT DIFFERENT TIMES
- MAXIMUM CONCENTRATION OF DIFFERENT TACS MAY OCCUR AT DIFFERENT LOCATIONS
- MODELED RESULTS FOR DIFFERENT FACILITIES CANNOT BE SUMMED WITHOUT A STANDARD RECEPTOR GRID
 - MODELED MAXIMUM CONCENTRATIONS WILL NOT BE TEMPORALLY AND SPATIALLY CONSISTENT

IMPORTANCE OF CHROMIUM SPECIATION

- **BASED UPON THIS EXAMPLE:**
 - IF TOTAL CHROMIUM IS ASSUMED TO BE HEXAVALENT CHROMIUM, THE MODELED MAXIMUM AMBIENT CONCENTRATION (MAC) IS GREATER THAN THE BENCHMARK AMBIENT CONCENTRATION FOR CANCER (BAC_c)
 - IF AP-42 FACTOR FOR HEXAVALENT CHROMIUM IS USED FOR COAL COMBUSTION, THE MODELED MAC IS LESS THAN THE BAC $_{\rm c}$

TIER 1, 2, 3 and 4 Cr(VI) Results Compared

Tier Allowable Implication
Emissions
1 0.041 lb/yr 99.84% Less Than Tier 4
2 3.366 lb/yr 87.05% Less Than Tier 4
3 57.991 lb/yr Single Boiler Complies
4 25.991 lb/yr Single Boiler Complies
All 4 Boilers Comply